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Abstract. —
For practical and historical reasons, most of what we know about gravity is based
on observations made or experiments conducted beyond the surfaces of dominant
massive bodies. Although the force of gravity inside a massive body can sometimes
be measured, it remains to demonstrate the motion that would be caused by that
force through the body’s center. Since the idea of doing so has often been discussed
as a thought experiment, we here look into the possibility of turning this into a real
experiment. Feasibility is established by considering examples of similar experiments
whose techniques could be utilized for the present one.

PACS 04.80.Cc – Experimental tests of gravitational theories.

1. – Introduction

Often found in undergraduate physics texts [1, 2, 3, 4] is the following problem, dis-
cussed in terms of Newtonian gravity: A test object is dropped into an evacuated hole
spanning a diameter of an otherwise uniformly dense spherical mass. One of the reasons
this problem is so common is that the answer, the predicted equation of motion of the
test object, is yet another instance of simple harmonic motion. What is rarely pointed
out, however, is that we presently lack direct empirical evidence to verify the theoretical
prediction. Confidence in the prediction is primarily based on the success of Newton’s
theory for phenomena that test the exterior solution. Extrapolating Newton’s law to the
interior is of course a worthwhile mathematical excercise. But a theoretical extrapolation
is of lesser value than an empirical fact.

Essentially the same prediction follows from general relativity. [5, 6, 7, 8] Since there
is no obvious reason to doubt the predicted simple harmonic motion, in this context
too, the impression is sometimes given that it is a physical fact. A noteworthy example
is found in John A. Wheeler’s book, A Journey Into Gravity and Spacetime, in which
he refers to the phenomenon as “boomeranging.” Wheeler devotes a whole (10-page)
chapter to the subject because, as he writes, “Few examples of gravity at work are easier
to understand in Newtonian terms than boomeranging. Nor do I know any easier doorway
to Einstein’s concept of gravity as manifestation of spacetime curvature.” [9] But nowhere
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in Wheeler’s book is there any discussion of empirical evidence for “boomeranging.” No
doubt, Newton, Einstein and Wheeler would all have been delighted to see the simple
harmonic motion demonstrated in a laboratory experiment.

Since the predicted effect has never been observed even as an approximation, our
initial goal should be modest: to roughly demonstrate the principle first and perhaps
later concern ourselves with high precision. After laying out a basic strategy for doing the
experiment, this essay concludes with a few additional remarks concerning motivation.

2. – Feasibility

What kind of apparatus do we need? In the 1960s–1970s a few proposals to measure
Newton’s constant, G, involved through-the-center oscillations. Y. T. Chen discusses
these ideas in his 1988 review paper on G measurements. [10] Each example in this
particular group of proposals was intended for space-borne satellite laboratories. The
original motivation of these ideas was to devise ways to improve the accuracy of our
knowledge of G by timing the oscillation period of the simple harmonic motion. Though
having some advantages over Earth-based G measurements, they also had drawbacks
which ultimately prohibited them from ever being carried out.

What distinguishes these proposals from experiments that have actually been carried
out in Earth-based laboratories is that the test objects were to be allowed to fall freely
back and forth between extremities inside a source mass the whole time. Whereas G
measurements conducted on Earth typically involve restricting the test mass’s movement
and measuring the force needed to do so. The most common, and historically original,
method for doing this is to use a torsion balance, where a fiber provides a predetermined
resistance to rotation. Torsion balances have also been used to test Einstein’s Equivalence
Principle (e.g., Gundlach, et al [11]). Another distinguishing characteristic of Earth-
based G measurements and Equivalence Principle tests is that the test masses typically
remain outside the larger source masses. Since movement of the test masses is restricted
to a small range of motion, these tests can be characterized as static measurements.
Torsion balance experiments in which the test mass is inside the source mass have also
been performed. (For example, Spero, et al [12] and Hoskins, et al [13].) These latter
experiments were tests of the inverse square law.

All three of these types of experiments – G measurements, Equivalence Principle and
inverse-square law tests – however, are static measurements in the sense that the test
masses were not free to move beyond a small distance compared to the size of the source
mass. The key innovation in the present proposal is that we want to see an object fall
radially as long as it will; we want to eliminate (ideally) or minimize (practically) any
obstacle to the radial free-fall trajectory. Space-based experiments would clearly be the
optimal way to achieve this. But a reasonably close approximation can be achieved with
a modified Cavendish balance in an Earth-based laboratory.

As implied above, the key is to design a suspension system which, instead of providing
a restoring force that prevents the test masses from moving very far, allows unrestricted
or nearly unrestricted movement. Two available possibilities are fluid suspensions and
magnetic suspensions (or a combination of these). In 1976 Faller and Koldewyn succeeded
in using a magnetic suspension system to get a G measurement. [14, 15] The experiment’s
accuracy was not an improvement over that gotten by other methods, but was within
1.5% of the standard value.

In the apparatus Cavendish used for his original G measurement the torsion arm and
test masses were isolated from the source masses by a wooden box. In Faller and Kold-
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Fig. 1. – Schematic of modified Cavendish balance. Since the idea is to demonstrate the simple
harmonic motion only as a first approximation, deviation due to the slight arc in the trajectory
is inconsequential.

ewyn’s experiment the arm was isolated from the source masses by a vacuum chamber.
The modified design requires that there be no such isolation, as the arm needs to swing
freely through the center of the source masses. (See Figure 1.) Given the modest goal
of the present proposal, it is reasonable to expect that the technology used by Faller
and Koldewyn could be adapted to demonstrate the oscillation prediction. Moreover,
it seems reasonable to expect that advances in technology (e.g., better magnets, better
electronics, etc.) since 1976 would make the experiment quite doable for an institution
grade physics laboratory.

3. – Motivation: Completeness and Aesthetics

One hardly needs to mention the many successes of Newtonian gravity. By success
we mean, of course, that empirical observations match the theoretical predictions. Ein-
steinian gravity is even more successful. The purpose of many contemporary gravity
experiments is to detect physical manifestations of the differences between Newton’s and
Einstein’s theories. In every case Einstein’s theory has proven to be more accurate. This
is impressive. Given the level of thoroughness and sophistication in gravity experimenta-
tion these days one may be taken aback to realize that Newton’s and Einstein’s theories
both remain untested with regard to the problem discussed above. The simple harmonic
motion prediction is so common and so obvious that we have come to take it for granted.
Wouldn’t it be more satisfactory if, when discussing the prediction, we could at the same
time cite the physical evidence?

The Newtonian explanation for the predicted harmonic motion is, of course, that a
massive sphere produces a force (or potential) of gravitational attraction. The corre-
sponding general relativistic explanation is that the curvature of spacetime causes the
motion. Specifically, the predicted effect is due to the slowing of clock rates toward the
center of the sphere. A physical demonstration of the effect would thus indirectly, though
convincingly, support general relativity’s prediction that the rate of a clock at the body’s
center is a local minimum—a prediction that has otherwise not yet been confirmed.

In summary, if R represents the surface of a spherical mass, our empirical knowledge
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of how things move because of the mass within R is essentially confined to the region,
r & R. The region 0 ≤ r . R is a rather basic and a rather large gap. It is clearly the
most ponderable part of the domain. Why not fill this gap?

One of the distinctive features of the kind of experiment proposed above is that its
result is, in principle, independent of size. The satellite versions mentioned by Chen were
thus referred to as “clock mode” experiments. The determining factor in the oscillation
period is the density of the source mass. If the source mass is made of lead (density,
ρ ≈ 11, 000 kg / m3) the oscillation period is about one hour. I’d guess that many students
and physicists would be fascinated to observe for an hour, to watch the oscillation take
place, knowing that the mass of the larger body is the essential thing making it happen.
In my opinion this would be a beautiful sight. Beautiful for completing the domain,
0 ≤ r . R, and beautiful simply to see what no human being has seen before.
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